Anesthesia of risk patients in small animal practice

ANESTHESIA 4.1 2012

Dr. Miklós Pál Dunay

Szent István University, Faculty of Veterinary Science Department and Clinic of Surgery and Ophthalmology

Subjects

ASA risk classification ↑
(American Society of Anesthetists)

(N)CEPOD urgency of intervention ↑↓
(National Confidential Enquiry into Perioperative Deaths)

Subjects

- Young patients
- Old patients
- Pregnant patients
- Cardiovascular patients
- Respiratory patients
- GI patients
- Liver patients
- Kidney patients
- Endocrine patients
- Septic patients
- Trauma patients

Subjects

- Young patients
- Old patients
- Pregnant patients
- Cardiovascular patients
- Respiratory patients
- GI patients
- Liver patients
- Kidney patients
- Endocrine patients
- Septic patients
- Trauma patients

Young patients

Phys. characteristics 1

- CNS
 - Blood/brain barrier permeable (↓ dose until 4 w)
 - Immature sympathetic regulation (pain → sensitisation → hyperalgesia, allodynia)
- Heart and circulation
 - Vegetative innervation of heart immature
 - Heart min. vol.: frequency dependent (newborn 30%, adult 300% reserve)
 - Weak vasomotoric function, BP ↓
- Respiration
 - Alveolar surface area ↓, surface tension ↑
 - Respiratory rate, tidal minute volume ↑
 - O₂ requirement 2-3 x, but chemoreceptor sens. ↓

Young patients

Phys. characteristics 2

- Fluid homeostasis
 - RBC, Ht, Hb, G, Ca, K, Prot ↓
 - Total water 80% (adult 60%), EC 40% (adult 20%)
 - Overhydration → oed. pulm. (vasomotor func. ↓)
- Kidney, excretion
 - Glom. filtration (2 w), tubular func. (6 w) ↓
 - Sens. to fluid loss (10% olig., 15% anuria)
 - Urine conc. ↓, Na loss ↑
- Liver, metabolism
 - Microsomal enzyme system (4 w) ↓
- Thermoregulation
 - Relatively large body surf., shivering heat prod. ↓
Young patients
Anesthesia

- Fluid therapy (iv., io.), temp. control
- Atropine (not glycopyrrolate!)
- Isoflurane, sevoflurane
- Ketamine (dog: immature liver, cat: immature kidney)
 + midazolam
- Ketamine
 + medetomidine (cat: bradycardia, hypothermia)
- Fentanyl (respiration ↓)
 + midazolam + medetomidine

Young patients
Puppy anesthesia

- Atropine 0.04 mg/bwkg im.
- Isoflurane 2-3 V%, sevoflurane 3-4 V%
- Ketamine 20 mg/bwkg +
 medetomidine 0.05 mg/bwkg im.
 (atipamezole 0.3 mg/bwkg im.)

Young patients
Kitten anesthesia

- Atropine 0.04 mg/bwkg im.
- Isoflurane 2-3 V%, sevoflurane 3-4 V%
- Ketamine 20 mg/bwkg +
 medetomidine 0.05 mg/bwkg im.
 (atipamezole 0.3 mg/bwkg im.)

Subjects

- Young patients
- Old patients
- Pregnant patients
- Cardiovascular patients
- Respiratory patients
- GI patients
- Liver patients
- Kidney patients
- Endocrine patients
- Septic patients
- Trauma patients

Life expectancy

- Dogs
 - 0-10 kg 11.5 y
 - 10-15 kg 10.9 y
 - 15-25 kg 9.9 y
 - 25-45 kg 8.9 y
 - 45 kg+ 7.5 y
- ASA: generalisation
Old patients

Phys. characteristics 1

- Heart, circulation
 - Compensation reserve ↓
 - Heart muscle disease, valvular insufficiency
 - Blood volume, heart min. vol., BP, baroreceptor activity ↓, circulation time ↑
 - Vagotonia

- Respiration
 - Anatomical dead space, residual volume ↑
 - Vital capacity, compliance, O₂ diffusion, CO₂ elim., respiratory freq., tidal volume, tidal min. vol., capillary volume, defensive reflexes ↓

Old patients

Phys. characteristics 3

- CNS
 - Neurotransmitter synthesis/degradation ratio ↓
 - Receptor changes
 - Thermoregulation ↓
 - Myelin sheath degeneration, LA effect ↑
 - Muscle relaxant effect longer

- Vegetative nervous system
 - Impulse conduction slows, sensitivity ↑
 - Vagotonia ↑, sensitivity to catecholamines ↑

Old patients

Anesthesia

- Pre-oxygenation, fluid therapy, warming
- Dose reduction 50-70% (!)
- Atropine (vagotony → excess tachycardia)
- ACP small dose! (BP ↓, convulsions ↑)
- Midazolam (paradox reaction rare)
- Opioids (analgesia, Respiration ↓)
- Ketamine (longer duration)
- Propofol (cat: delayed recovery)
- Isoflurane
- Alpha₂-agonists: NO! (hypotension, bradycardia, arrhythmia, respiration depr., insulin ↓, PU)

Old patients

Anesthesia of old dogs

- Atropine 0.02 mg/bwkg im., iv.
- Midazolam 0.5 mg/bwkg iv. or ACP 0.01 mg/bwkg im.
- Propofol 2.0-5.0 mg/bwkg iv.
- Isoflurane 1 V%
- Fentanyl + propofol TIVA dose to effect

Old patients

Anesthesia of old cats

- Atropine 0.02 mg/bwkg im.
- Midazolam 0.5 mg/bwkg iv. or ACP 0.05 mg/bwkg im.
- Propofol 5-7 mg/bwkg iv.
- Isoflurane 1-1.5 V%
- Ketamine 0.5 mg/bwkg iv. or fentanyl 0.003 mg/bwkg iv. (analgesia)
Subjects
- Young patients
- Old patients
- Pregnant patients
- Cardiovascular patients
- Respiratory patients
- GI patients
- Liver patients
- Kidney patients
- Endocrine patients
- Septic patients
- Trauma patients

Pregnant patients
Phys. characteristics 1
- Body mass ratio (fetus/mother)
 - Dog 16.1%, cat 13.1%, human 5.7%
- Circulation
 - Heart capacity ↑, heart min. vol. ↑ (+30-50%)
 - Plasma estrogen ↑, peripheral blood supply ↑
 - During partuition heart freq. ↑, systolic BP ↑ (+10-30 mmHg), central venous pressure ↑ (+4-6 cmH₂O)
 - Heart reserve capacity ↓, compensated heart disease may decompensate

Pregnant patients
Phys. characteristics 2
- Respiration
 - Serum progesterone ↑
 - Resp. center sensitivity (to higher CO₂ level) ↑, hyperventilation, respiratory alkalosis → kidneys compensate, PH remains unchanged
 - Bronchial muscle relaxation, lung resistance ↓
 - Resp. volume ↓ (diaphragm dislocated cranial)
 - During partuition a resp. frequency ↑
 - O₂ requirements ↑ (+20%)
 - Hypoxia and hypercapnia risk at anesthesia
 - Diaphragm position, recumbency, anesthetics

Pregnant patients
Phys. characteristics 3
- Fluid homeostasis
 - Blood volume, plasma volume ↑ (+40%)
 - RBC, Hb, plasma protein conc. relative ↓
- Excretion
 - GFR ↑ (+60%), UREA ↓, CREA ↓
 - „Normal“ UREA and CREA values mean decreased kidney function, NSAID should be avoided
 - Anesthetics excreted faster
- GI system
 - Risk of regurgitation and vomiting

Pregnant patients
Preparation
- Precise body weight measuring
- Calm, warm, dry environment
- Blood sample
 - Blood count, TPP, G, UREA, CREA, ALT
- Vein catheter
- Preparation of surgical area while awake
- Preparation for emergency

Pregnant patients
Anesthesia 1
- Prevention of vomiting or regurgitation
 - Metoclopramide 0.2-0.4 mg/bwkg iv., im.
 - Cimetidine 6-11 mg/bwkg im.
- Infusion therapy
 - 20-60 ml/bwkg/h electrolyte inf.
- Preoxygenation
- Anticholinergics
 - Glycopyrrolate preferred
- Avoid
 - Phenothiazines, barbiturates, alpha₂-agonists
Pregnant patients

Anesthesia 2

- Introduction
 - Propofol, ketamine, steroid anesthetics
 - Rapid intubation, 100% O₂, recumbency (semilateral due to v. cava compression)
- In case of aggressive cat
 - Ketamine 5-10 mg/bwkg im. + benzodiazepines (0.1-0.2 mg/bwkg)

Pregnant patients

Anesthesia 3

- Maintenance (balanced)
 - Isoflurane inhalation anesthesia
 MAC value ↓ (in cats -40%)
 - Fentanyl 0.02 mg/bwkg iv. + benzodiazepines 0.1-0.5 mg/bwkg iv. (antagonizable ataralgesia)
 - Epidural anesthesia (combination)
 Lidocaine 1-2%: 1 ml/5 bwkg or 0.5 ml/10 cm

Subjects

- Young patients
- Old patients
- Pregnant patients
- Cardiovascular patients
- Respiratory patients
- GI patients
- Liver patients
- Kidney patients
- Endocrine patients
- Septic patients
- Trauma patients

Cardiovascular patients

Anomalies

- Congenital defects (PDA, PRAA)
- Cardiomyopathy (DCMP, HCMP)
- Heart rhythms (arrhythmias)
- Valvular insufficiency (mitral)
- Pericardial diseases
- Hypotension, hypertension
- Hypovolaemia
- Anaemia
- Heart worms

Cardiovascular patients

Anesthesia 1

- Preoxygenation
- Atropine, glycopyrrrolate (→ tachycardia)
- Midazolam, ACP (↓)
- Opioids (→ bradycardia)
- Propofol
- Dopamine
- No ketamine! (→ tachycardia)
- No inhalants! (neg. inotrop)
Cardiovascular patients

Anesthesia 2

- Atropine dog: 0.02; cat: 0.05 mg/bwkg im.
 glycopyrrrolate dog: 0.01; cat: 0.02 mg/bwkg im.
- Midazolam 0.5 mg/bwkg iv. or
 ACP 0.01-0.02 mg/bwkg im.
- Propofol 2.5-4 mg/bwkg iv.
- Assisted ventilation: O₂, TV 6-8 ml/bwkg,
 PEEP 2-4 mmHg
- Dopamine 2 (-10) µg/bwkg/min iv. (Ringer inf.)
- Propofol (50 ml + 5% G inf. 200 ml) and
 fentanyl (50 ml + Ringer inf. 500 ml) to effect iv.

Subjects

- Young patients
- Old patients
- Pregnant patients
- Cardiovascular patients
- Respiratory patients
- GI patients
- Liver patients
- Kidney patients
- Endocrine patients
- Septic patients
- Trauma patients

Respiratory patients

Anomalies

- Receptors
 - O₂: glomus caroticum; CO₂: medulla oblongata
 - Tension: lung, chest wall
 - Touch: defense mechanisms
- Extrapulmonary
 - Chest movement (rib fracture), diaphragm hernia
 - Pneumo-, haemo-, chylo-, hydrothorax
 - Volume extensions, megaesophagus, foreign bodies
 - Laryngeal paralysis
- Intrapulmonary
 - Inflammation, fibrosis, oedema, tumor, atelectasia

Respiratory patients

Anesthesia 1

- Parasympatholytics
 - Dead space ↑, gland secretion ↓, mucous m. dry
- Phenothiazines (dosis ↓)
 - CO₂ threshold ↑
- Alpha₂-agonists
 - Respiration frequency and TV ↓
- Benzodiazepines
 - CO₂ threshold ↑
- Opioids
 - Respiration depression (drug and dose dep.)
 - CO₂ threshold ↑

Respiratory patients

Anesthesia 2

- Phencyclidines
 - Apneal respiration pattern (blood gas param. ↔)
 - Bronchosecretion ↑ (tube suction), salivation ↑
- Propofol
 - Respiration depression (fast admin, overdose)
- Inhalational anesthetics
 - TV ↓, respiration freq. ↑ (doesn't compensate)
 - CO₂ threshold ↑
Respiratory patients
Intrapulmonary f. - anesthesia

- Glycopyrrolate 0.01 mg/bwkg iv. or atropine 0.02 mg/bwkg im.
- Midazolam 0.5 mg/bwkg iv.
- Propofol 3-5 mg/bwkg iv.
- \(\text{O}_2 \), ventilation (mild hypervent.)
- Fluid therapy (bicarbonate)
- Propofol (50 ml + 5% G inf. 200 ml) and fentanyl (50 ml + Ringer inf. 500 ml) to dose iv.

Subjects

- Young patients
- Old patients
- Pregnant patients
- Cardiovascular patients
- Respiratory patients
- GI patients
- Liver patients
- Kidney patients
- Endocrine patients
- Septic patients
- Trauma patients

Gastrointestinal patients
Anesthesia 1

- Foreign body removal
 - ASA dependent anesthesia
 - Replace fluid deficiency, electrolyte level correction
 - Circulation support: dopamine 0.002-0.1 mg/bwkg/min cont. drip inf. iv. to effect
 - Induction: propofol 2-4 mg/bwkg iv. to effect + fentanyl 0.02 mg/bwkg iv.
 - Maintenance: propofol 9-15 mg/bwkg/h + fentanyl 0.02 mg/bwkg/h
 - Postoperative: metoclopramide, \(\text{H}_2 \) blocker, pain management

Gastrointestinal patients
Anesthesia 2

- Gastric dilatation and volvulus (GDV)
 - Diaphragm dislocation towards thorax, respiration ↓
 - Venous reflux from abdominal organs ↓, heart min. vol. ↓, arrhythmia, BP ↓, hypoxia, acidosis
 - Fast fluid therapy (first 30 min):
 10 ml/bwkg HAES 6% + 10 ml/bwkg Ringer iv.;
 dopamine 0.005-0.01 mg/bwkg/min iv.

Gastrointestinal patients
Anesthesia 3

- Gastric dilatation and volvulus (GDV)
 - Induction: midazolam 0.5 mg/bwkg iv. + propofol 3-5 mg/bwkg iv. + fentanyl 0.02 mg/bwkg iv., fast intubation, 100% \(\text{O}_2 \)
 - Maintenance: propofol + fentanyl to effect
 - Treatment of arrhythmia: lidocaine 1-2 mg/bwkg iv.
 (then 0.04-0.06 mg/bwkg/min iv. inf.) +/- procaine 6-12 mg/bwkg iv. every 6-8 h
 - In case of shock symptoms consider prednisolone
 - Postoperative: pain management
Subjects
- Young patients
- Old patients
- Pregnant patients
- Cardiovascular patients
- Respiratory patients
- GI patients
- Liver patients
- Kidney patients
- Endocrine patients
- Septic patients
- Traumatic patients

Liver patients

Anomalies
- Circulation autoregulation ↓ (HMV 25% !)
 - Isoflurane, sevoflurane: vasodilation (a. hep.)
 - Halothane: vasoconstriction (a. hep.)
 - Inhalational anesthetics: portal circulation ↓
 - Fasting: autoregulation ↓
- Protein metabolism ↓ (TPP 90%, enzymes)
- Carbohydrate metabolism ↓ (GNG, storage, GL)
- Metabolism ↓ (endogenous, exogenous detox.)
- Excretion ↓ (bile)
- Immune system ↓
- Coagulation factors ↓ (I, II, V, VII, IX, X, fibrinolytic activators and inhibitors)

Anesthesia 1
- Parasympatholytics
 - Dog: excretion mostly unchanged (kidney)
 - Cat: metabolized by atropine esterase
- Phenothiazines
 - Glucuron conjugation (delayed)
- Benzodiazepines
 - Midazolam (inactive metabolites), no diazepam!
 - Alpha2-agonists
 - Partial biotransformation (vs. unchanged excretion)
- Opioids (fentanyl recommended)
 - Glucuron conjugation (delayed, rebound!)
 - Pylorus and Oddi sphincter spasm; His ↑, perf. ↓

Anesthesia 2
- Phencyclidines
 - Dog: demethylation, hydrolysis in the liver; heptonecephalopathic seizure induction
 - Cat: excreted unchanged in kidney
- Propofol
 - Hydroxylation, glucuron or sulfuric conjugation (delayed inactivation)
- Inhalational anesthetics metabolism
 - Isoflurane, desflurane, N2O ~ 0%
 - Sevoflurane, enflurane 8%
 - Halothane 50% (don't use!)
 - Methoxyflurane 70% (don't use!) (renotoxic metabolites)

Anesthesia 3
- Clotting examination, preoxygenation
- Atropine 0.02 mg/bwkg im.
- Midazolam 0.5 mg/bwkg iv.
- Propofol 2-5 mg/bwkg iv.
- Ventilation, hypoxia prevention
- Glucose 5% 3 ml/bwkg/h, G ↓ prevention
- Plasmaexp. 20 ml/bwkg iv. (if Alb. 1.5 g/dl ↓)
- Dopamine 2 μg/bwkg/min iv. (if BP ↓)
- Isoflurane max. 1% + N2O 50% + fentanyl (best: remifentanyl) to effect
Subjects
- Young patients
- Old patients
- Pregnant patients
- Cardiovascular patients
- Respiratory patients
- GI patients
- Liver patients
- Kidney patients
- Endocrine patients
- Septic patients
- Trauma patients

Kidney patients

Anomalies 1
- Circulation autoregulation (heart min. vol. 25% !)
 - Systemic arterial mean pressure 70-80 mmHg, CVP 0-5 cmH₂O → urine excretion 0.5-1 ml/bwkg/h ↑
- Fluid compartment volume (regulation ↓)
 - Glomerular filtrate → prox. tubules 7/8 resorption → dist. tubules ADH-dependent resorption
 - Opioids: ADH ↑, oliguria
 - Alpha₂-agonists: ADH ↓, polyuria
- Fluid compartment composition (regulation ↓)
 - ADH ↑: water and Na retention, K loss

Anomalies 2
- Acid-base state (regulation ↓)
 - Tubular excretion (H⁺, Na-phosphate, ammonium salts)
- Excretion, detoxification (endog. endogen, exogen) ↓
- Renin, erythropoetin, vitamin D conversion, Ca and P homeostasis ↓

Kidney patients

Anesthesia 1
- Prevent hypovolaemia, hypotension, hypoxia, acidosis!
- During anesthesia GFR 100% → 40% !
- Fluid therapy (K⁺ level managed)
- Dopamine
- ACP ↓ (IR: longer and stronger effect)
- Benzodiazepines
- No alpha₂-agonists!
 - Perfusion ↓ + insulin ↓, G ↑ + ADH ↓ → PU
- Opioids (ADH ↑ → oliguria)

Anesthesia 2
- Ketamine (not in cats!)
 - Perfusion ↑, but resistance is ↑ → GFR ↔ ↓
- Propofol
- Inhalational anest.
 - Halothane, isoflurane, sevoflurane, enflurane, N₂O: heart min. vol. ↓, perfusion ↓, ADH ↓
 - Desflurane recommended
- FLUTD
 - Dehydration, K⁺ ↑, acidosis, P ↑, hypothermia
 - K⁺ ↑ → bradycardia (1-2 mmol/bwkg Na-bicarb. iv.)
Kidney patients

Anesthesia 3

- Atropine 0.02 mg/bwkg im.
- Dopamine 0.5-2 µg/bwkg/min iv.
- Midazolam 0.5 mg/bwkg iv.
- Propofol 3-5 mg/bwkg iv.
- Ventilation
- Propofol (50 ml + 5% G inf. 200 ml) and fentanyl (50 ml + Ringer inf. 500 ml) to effect iv.
- Isoflurane 0.8-1 V%
- Fluid therapy postop. for 2 days!

Subjects

- Young patients
- Old patients
- Pregnant patients
- Cardiovascular patients
- Respiratory patients
- GI patients
- Liver patients
- Kidney patients
- Endocrine patients
- Septic patients
- Trauma patients

Diabetes mellitus

Preparation 1

- Constantly elevated blood glucose-level
 - 7.5 mmol/l ↑
- IDDM
 - Middle aged and old female dogs
 (poodle, dachshund, spitz, terriers, spaniels)
- NIDDM
 - Old cats

Preparation 2

- Detailed patient exam
 - Blood (blood count, fasting G, Ht, ALT, AST, AP, Urea, Crea, ketone bodies, serum-electrolytes, blood gas values)
 - Urine (density, G, ketone bodies)
 - Consequences: fatty liver → hepatomegaly, cirrhosis, urosepsis, prerenal uraemia, etc
- Metabolic anomalies (praeop. correction!)
 - G ↑, dehydration, blood gas values (K*), serum-electrolytes

Preparation 3

- Insulin (goal: G 11-14 mmol/l ↓)
 - Im.: 0.1 IU/bwkg/h, then 0.5 IU/bwkg every 6-8 h
 - Iv.: 10-15 IU /1000 ml salsol or dextrose 5%, 0.05-0.1 IU/bwkg/h
- Resistance ↓
 - Preop. AB + sterility! (vein catheter sterility!)
- Perioperative stress diabetogen
 - Epinephrine, norepinephrine, cortisol, STH, glucagon ↑
Diabetes mellitus
Anesthesia 1

- **Recommended**
 - Short duration or antagonizable agents
 - Premedication: diazepam + butorphanol
 - Induction and maintenance: propofol or isoflurane

- **Avoid**
 - Xylazine (G ↑)
 - Glucocorticoids (anti-insulin effect, immunosuppression)
 - Hypoxia (catecholamines, G ↑)

Diabetes mellitus
Anesthesia 2

- **Perioperative G-control protocols**
 - Tight control: continuous insulin and glucose-infusion (continuous monitoring, small variance)
 - Loose control: no food, no glucose, no insulin on day of surgery (progressive G ↑)

Diabetes mellitus
Anesthesia 3

- **Compromise**
 - Perform usual routine until midnight of day before surgery
 - Fasting after midnight, and early morning
 - G measuring 1 h before; then every hour
 - In the morning 50% of normal insulin + 10 ml/bwkg/h dextrose 5% inf.
 - If G ↑: 0.25-0.5 IU/bwkg im. insulin
 - If G ↓: dextrose intake ↑

- **Postop. fasting**
 - Minimal time (gen. 0-3 days)
 - Iv. dextrose + im. insulin every 6 h

Subjects

- Young patients
- Old patients
- Pregnant patients
- Cardiovascular patients
- Respiratory patients
- GI patients
- Liver patients
- Kidney patients
- Endocrine patients
- Septic patients
- Trauma patients

Cushing Syndrome
Preparation 1

- **Hyperadrenocorticism (cortisol ↑)**
 - Hypophysis (85-95%) → hypophysectomy
 - Unilateral adrenal gland tumor (5-15%) → adrenalectomy
 - Iatrogen

- **Disposition**
 - Middle aged and old small body dogs (beagle, miniature schnauzer, boxer)
Cushing Syndrome

Preparation 2
- Multisystemic changes = risk factors
- Circulation exam (physical, RTG, ECG, US)
 - Fluid retention, hypertension, valvular insufficiency, left ventricular hypertrophy, chronic heart failure
- Respiration exam (respiration, blood gas)
 - Weak respiratory muscles, thoracic and abd. fat depot, hepatomegaly, decreased diaphragm movements
 - Consider IPPV

Cushing Syndrome

Preparation 3
- Increased mineralocorticoid-level
 - Na⁺- and water retention (↑ level)
 - Increased K⁺- and H⁺-excretion (↓ level)
- Following mitothane therapy
 (50 mg/bwkg/day o.p. DDD, Lysodren for 25 days)
 - may be mineralcort. deficiency
 - Hypovolaemia, hyperkalaemia, acidosis
 - Fluid replacement, balanced electrolytes, glucocorticoid-, mineralocorticoid-repl. iv.

Cushing Syndrome

Preparation 4
- Cushing-syndrome → diabetes mellitus
 - Cortisol level ↑ → insulin requirement ↑
- Cortisol level ↓ → relative hyperinsulinaemia
 - Preoperative mitothane therapy
 - Adrenocortical inhibitors (metyrapone, aminoglutethimide)
 - Adrenocortical-tumor resection

Cushing Syndrome

Anesthesia 1
- Anesthetic-selection
 - Endocrine disease limits minimally
- Avoid: etomidate, metomidate
 - During unilateral adrenal-tumor-resection suppresses contralateral function as well
- Perioperative stability
 - Fluid-, electrolyte-, acid-base homeostasis and G
 - IPPV: resp. min. vol. 150 ml/bwkg/min ↑, PaCO₂ 60 mmHg ↓

Cushing Syndrome

Anesthesia 2
- Substitution therapy after radical surgery
 - Until stabilization after unilateral adrenalectomy
 (remaining adrenal gland maintains function)
 - Until the end of animal’s life after bilateral adrenalectomy and hypophysectomy
Subjects

- Young patients
- Old patients
- Pregnant patients
- Cardiovascular patients
- Respiratory patients
- GI patients
- Liver patients
- Kidney patients
- Endocrine patients
- Septic patients
- Trauma patients

Hypothyreosis

Preparation 1

- Most common endocrinopathy in dogs
 - Middle aged and old dogs
 (dobermann, boxer, retriever, beagle, schnauzer)
 - 95% primary idiopathic or autoimmune

Preparation 2

- Anesthesiological aspect:
 - Metabolic rate ↓ → drug metabolism ↓
 - Myocardium contractility ↓, bradycardia
 - Anaemia (consider transfusion)
 - Obesity, decreased diaphragm movement
 - Thermoregulation disturbances (hypothermia)

Preparation 3

- Pre-treatment for elective surgery:
 - L-thyroxine 20 µg/bwkg/day at least 2 weeks po.
 (reach the normal “euthyroid risk”)
 - L-thyroxine 1x 20-40 µg/bwkg iv.
 (or L-triiodothyronine 4x 6 µg/bwkg po.)
 - Thyreotoxicosis may happen

- Anesthetic selection:
 - In small part metabolizable drugs
 - Dose ↓

Anesthesia 1

- Premedication (not always)
 - 0.05-0.1 mg/bwkg butorphanol im.
 (sedation, potentiation, analgetic)
 - Bradycardia: 0.02-0.06 mg/bwkg atropine im.

- Induction and maintenance
 - Propofol to effect iv.
 - Isoflurane (even during myocardial depression)
 - Halothane (milder peripheral vasodilation than isoflurane → BP ↓, temp ↓)

Anesthesia 2

- Avoid
 - Respiration depressing drugs (decreased diaphragm movement)
 - ACP and other phenothiazines (longer effect, hypotermia, hypotension)

- Monitoring
 - Respiration- and blood gas-parameters (IPPV)
 - Fluid homeostasis
 - Temperature (warm inf., heating pad)
<table>
<thead>
<tr>
<th>Subject Category</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young patients</td>
<td></td>
</tr>
<tr>
<td>Old patients</td>
<td></td>
</tr>
<tr>
<td>Pregnant patients</td>
<td></td>
</tr>
<tr>
<td>Cardiovascular patients</td>
<td></td>
</tr>
<tr>
<td>Respiratory patients</td>
<td></td>
</tr>
<tr>
<td>GI patients</td>
<td></td>
</tr>
<tr>
<td>Liver patients</td>
<td></td>
</tr>
<tr>
<td>Kidney patients</td>
<td></td>
</tr>
<tr>
<td>Endocrine patients</td>
<td></td>
</tr>
<tr>
<td>Septic patients</td>
<td></td>
</tr>
<tr>
<td>Trauma patients</td>
<td></td>
</tr>
</tbody>
</table>

Hyperthyreosis

Preparation 1
- Hypermetabolic state → multisyst. consequences
- Middle aged and old animals
 - Cats (adenoma), dogs rarely (carcinoma)
- Metabolic rate ↑
 - O₂- and G-requirement ↑, drug-metabolism ↑
- Cardiac consequences
 - Tachycardia
 - Myocardial sensitivity to hypoxia, dysrhythmia
 - CMP (HCMP), chronic heart failure (15%)

Preparation 2
- Detailed patient exam
 - Auscultation, RTG, ECG, US
 - Laboratory: ALT, AST, AP
- Goal
 - Reach a euthyreoid state

Preparation 3
- Methimazole
 - 1 (-1.5) mg/bwkg 3x daily, for 2 weeks
 - 2-3 weeks euthyreoid state: symptoms normalize
 - Stop in case of agranulocytosis, thrombocytopenia
- Propranolol
 - 0.5-1 mg/bwkg 3x daily, for 7-14 days
 - β-blocker (tachyarrhythmias, hypersensitivity ↓)
 - Carefully in chronic heart failure cases (neg. inotrope)

Anesthesia 1
- Most general protocols are safe
 - After 2 weeks maintaining a euthyreoid state
- In untreated animals avoid
 - Ketamine, tiletamine (→ catecholamine level ↑)
 - Atropine (→ vagal tone decreases)
 - Xylazine, halothane (→ myocardial sensitivity)
Hyperthyreosis
Anesthesia 2

- Premedication
 - 0.05-1 mg/bwkg ACP im. (stress ↓, dysrhythmia ↓, 8-blocker → BP ↓)
 - Opioids (myocardial O₂-demand ↓, bradycardia)
- Induction
 - I.v.: propofol, thiobarbituate, alphaxalone and alphadoline (dysrhythmias ↓)
 - Inhalational: stress in awake patient → catecholamine ↑

Hyperthyreosis
Anesthesia 3

- Intubation: smaller tube or tracheotomy
- Maintenance
 - Isoflurane (easy regulation, don’t causes heart muscle sensitization, minimal myocardial depression)
- Monitoring
 - ECG: ventricular dysrhythmias
 0.01-0.05 mg/bwkg iv. propranolol,
 0.1-1 mg/bwkg iv. lidocaine
 - Body temperature
 - Oxygen consumption ↑ (sensitive to hypoxia)

Hyperthyreosis
Anesthesia 4

- Complications of bilat. thyreoidectomy
 - Iatrogen hypoparathyreoidism may be: blood exam. over 3 days: Ca ↓ (convulsions) → Ca and D vit.
- Total thyreoidectomy
 - Total hormonal replacement after 24-48 h

Subjects

- Young patients
- Old patients
- Pregnant patients
- Cardiovascular patients
- Respiratory patients
- GI patients
- Liver patients
- Kidney patients
- Endocrine patients
- Septic patients
- Trauma patients

Septic patients
Anomalies 1

- SIRS (Systemic Inflammatory Response Syndrome of noninfectious origin)
 - Trauma, steril inflammation, burns etc.
- Sepsis (like SIRS but infections origin)
 - Pyometra, pyothorax, prostate-, liver-, kidney-abcess, mastitis, wound inf., GI perforation, - arrodation etc.
- MODS (Multiple Organ Dysfunction Syndrome: consequence of SIRS or sepsis)
 - Organ systems affected in following order: dog: GI, liver, kidney, lung; cat: lung
Septic patients

Anomalies 2

- Signs of septic state
 - Core body temperature
 - $<38^\circ C$: hypovolaemic shock, bacteriaemia
 - $>40^\circ C$: bacteriaemia
 - Peripheral body temp. min. $6^\circ C \downarrow$
 - Pulse freq. \uparrow (150-200/min)
 - Respiration freq. \uparrow
 (metabolic acidosis, thromboembolism, respiratory insufficiency)

Septic patients

Anomalies 3

- Signs of septic state
 - CRT >2 sec
 - Mucous membr.: pale, anemic, gray
 - Systolic arterial pressure <90 mmHg
 - Central venous pressure
 - $<1-2$ cmH$_2$O: hypovolaemia
 - >15 cmH$_2$O: right sided heart failure, inf. \uparrow
 - Urine filtration <0.5 ml/bwkg/h
 - Ht $<20\%$: bleeding, overinfusion
 - Ht $>50\%$: fluid loss
 - G <3.9 mg/dl (70 mg/dl): sepsis

Septic patients

Preparation

- Eliminate infection source
 - Drain
 - Antibiosis (based on hemoculture)
- Circulation support
 - Volume support, acidosis correction
 - Increase of systemic central pressure
 - Optimize pressure of right and left ventricle
 - Optimize heart index
- Support tissue perfusion
 - Preoxygenation

Septic patients

Anesthesia

- Fast induction
 - Etomidate 0.5-1.5 mg/bwkg iv.
 - Midazolam + ketamine
 - Intubation
- Maintenance (balance)
 - Fentanyl 0.01 mg/bwkg/20 min iv.
 - Vecuronium 0.08-0.1 mg/bwkg/20 min iv.
 - Can be increased with inhalational anesthetics
 (isoflurane, sevoflurane)
 - Artificial ventilation!

Subjects

- Young patients
- Old patients
- Pregnant patients
- Cardiovascular patients
- Respiratory patients
- GI patients
- Liver patients
- Kidney patients
- Endocrine patients
- Septic patients
- Trauma patients
Trauma patients

Anomalies 1

- **Common changes**
 - Thoracic changes in 70% of cases (oedema, thoracic bleeding, PTX, diaphragmatic hernia, rib fracture)
 - Spleen-, liver rupture, urinary bladder rupture
 - CNS injuries

- **Emergency cases**
 - Processes constricting upper respiratory tract
 - Open chest wounds, tension PTX
 - Open abdomen, eventration of abdominal organs
 - Life threatening bleeding

Preparation

- **Stabilization** (respiration, circulation, homeostasis)
- **Analgesia**
 - Butorphanol 0.4 mg/bwkg im.
 - Carprofen 4 mg/bwkg iv.
 - Meloxicam in dog: 0.2 mg/bwkg iv. (in cat 0.3 mg/bwkg iv.)

Premedication

- Midazolam 0.5 mg/bwkg im., iv. or diazepam 0.5 mg/bwkg iv. + butorphanol 0.1-0.4 mg/bwkg im., iv.

Anesthesia

- **Induction**
 - Propofol 1.5 (-10) mg/bwkg iv. to effect
- **Maintenance**
 - Isoflurane, sevoflurane: 2-3 V% + O₂ (contraindicated in CNS, increases intracranial pressure)
 - Propofol 15 mg/kg/h (Dextrose 5% inf.)
 + fentanyl 0.02 mg/kg/h iv. (Ringer-lactate inf.)
 - Midazolam 0.5 mg/bwkg im., iv.
 + fentanyl 0.02 mg/bwkg im., iv.